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Molecular gyroscopes and biological effects of weak extremely low-frequency magnetic fields
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Extremely low-frequency magnetic fields are known to affect biological systems. In many cases, biological
effects display ‘‘windows’’ in biologically effective parameters of the magnetic fields: most dramatic is the fact
that the relatively intense magnetic fields sometimes do not cause appreciable effect, while smaller fields of the
order of 10–100mT do. Linear resonant physical processes do not explain the frequency windows in this case.
Amplitude window phenomena suggest a nonlinear physical mechanism. Such a nonlinear mechanism has
been proposed recently to explain those ‘‘windows.’’ It considers the quantum-interference effects on the
protein-bound substrate ions. Magnetic fields cause an interference of ion quantum states and change the
probability of ion-protein dissociation. This ion-interference mechanism predicts specific magnetic-field fre-
quency and amplitude windows within which the biological effects occur. It agrees with a lot of experiments.
However, according to the mechanism, the lifetimeG21 of ion quantum states within a protein cavity should
be of unrealistic value, more than 0.01 s for frequency band 10–100 Hz. In this paper, a biophysical mecha-
nism has been proposed, which~i! retains the attractive features of the ion interference mechanism, i.e.,
predicts physical characteristics that might be experimentally examined and~ii ! uses the principles of gyro-
scopic motion and removes the necessity to postulate large lifetimes. The mechanism considers the dynamics
of the density matrix of the molecular groups, which are attached to the walls of protein cavities by two
covalent bonds, i.e., molecular gyroscopes. Numerical computations have shown almost free rotations of the
molecular gyroscopes. The relaxation time due to van der Waals forces was about 0.01 s for the cavity size of
28 Å.

DOI: 10.1103/PhysRevE.65.051912 PACS number~s!: 87.50.Mn, 87.15.2v, 82.30.Fi
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I. INTRODUCTION

Weak static and extremely low-frequency~ELF! magnetic
fields ~MFs! can affect living things: cells, tissues, phys
ological systems, and whole organisms@1–3#. In many cases
biological effects of weak MF feature a resonancelike mu
peak behavior. Multipeak responses or magnetobiolog
spectra may appear with varying the frequency or amplit
of ac MF @4# and the magnitude of dc MF@5#. Usually, the
term ‘‘windows’’ is used for the peaks of the spectra.

Amplitude ‘‘windows,’’ see Fig. 1, specify the nonlinea
ity of the transduction mechanisms involved in magnetob
logical effects. This is confirmed more by the fact that t
magnetic noise simultaneously superimposed on a reg
magnetic signal suppresses the biological effect of that sig
@16–19#.

A nonlinear mechanism based on the quantum inter
ence has been developed in Ref.@20# to explain the unusua
ELF MF frequency and amplitude dependencies of mag
tobiological effects~MBEs!. The mechanism elaborates th
interference of ions bound within proteins. According to th
mechanism, superposition of the ion states forms a non
form pattern of the probability density of ion. This patte
consists of a row of more or less dense segments occu
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due to the interference between quantum states of ions
protein binding cavity. In a dc MF the pattern rotates with t
cyclotron frequency. Exposure to a time-varying MF of sp
cific parameters retards the rotation of the pattern and fa
tates escape of the ion from the cavity. This escape m
influence the equilibrium of the biochemical reactions to
timately result in a biological effect.

Biologically effective parameters of ac-dc magnetic fiel
depend on the charge-to-mass ratio of the ion in quest
The closed formula is derived for ‘‘magnetic’’ partP of the
ion-protein dissociation probability. Predictions based on t
formula reveal good agreement with the experimental res
involving calcium, magnesium, potassium, hydrogen, a
other ions of as molecular targets for MF. The theory d
scribes multipeak frequency and amplitude spectra of MB
involving ions of Ca21, Mg21, and H1 as molecular targets
for ac-dc MFs@20#.

The interference mechanism is surprisingly effective
retrospectively predicting the results of existing experime
conducted under the following defined MF conditions: p
allel ac-dc and pulsed MFs@20,21#, ‘‘null’’ and static MFs
@22#, and various MFs with a slow rotation of a biologic
system@23#. As an example, Fig. 1 demonstrates the co
parison of the experimental data, in parallel ac-dc MFs,
MBEs involving fixed and rotating proteins, and calculat
curves~dashed and solid lines!.

The good consistency between the theoretical calculat
and many experiments indicates that what underlies mag
tobiological effects is most likely an interference pheno
enon@24#.
©2002 The American Physical Society12-1
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FIG. 1. Experimental evidence@6–15# for
MBEs in a uniaxial MF~Ref. @7# noted a weak
perpendicular component of a dc MF!. Theoreti-
cal amplitude spectra: a dashed line was deriv
for fixed ion-protein complexes~factora51 was
not shown! and also for rotating ion-protein com
plexes, see details in Ref.@23#. Solid line repre-
sents the function~18! derived for gyroscope in-
terference.
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According to the interference mechanism, the relat
should be validG21Vc*1, whereG21 is the lifetime of ion
quantum states within a bound cavity andVc is a cyclotron
frequency of an ion in the geomagnetic field, usually 10–1
Hz. The postulate therefore has to be made that the ion q
tum states, more exactly their angular modes, live more t
0.01 s within the cavity. However, it is in contradiction wit
our common knowledge that such states might live only
10212210210 s because of the thermalizing interaction
the ion with the cavity walls. On the other hand, the weak
MF, \Vc!kBT, is commonly believed to be unable to co
tribute to the thermally driven~bio!chemical reactions~the
so-calledkT-problem!.

To overcome the problem, we note that there is a spec
mechanism that provides relatively large lifetime of the a
gular modes. Consider a dipole molecular group that is
tached within the cavity to its walls in two points, i.e., b
two covalent bonds, thus forming a group that may rot
inside the cavity without contact with walls. Such a constru
tion is referred to as a gyroscope. In the present case, it
molecular gyroscope. Of importance is the fact that the th
mal oscillations of that covalent bonds, or gyroscope’s s
ports, make only zero torque about the axis of rotation. T
leads to relatively slow thermalization of a gyroscopic d
gree of freedom. Relaxation is mainly due to van der Wa
interaction with thermalizing walls. As far as the interacti
potential, the Lennard-Jones potential, decreases asr 26 and
the walls’ inner surface grows asr 2, the overall van der
Waals contribution varies approximately asr 24. That is, the
relaxation quickly diminishes with incresing cavity siz
Computations show almost free rotations~thermalization
time 0.01 s! of a molecular gyroscope within the cavity of 2
Å size. This is enough for the ion interference mechanism
display itself. Probably, such spacious cavities are formed
ensembles of a few protein globules, between them,
within some enzymes that unfold the DNA double helix.
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II. MOLECULAR GYROSCOPE

A long lifetime of the angular modes is the sole serio
idealization underlying the mechanism of ion interferen
This idealization would be hard to substantiate with the io
in-protein-capsule model. One would have to assume tha
ion forms bound states of the polaron type with caps
walls. In turn, justification of a large lifetime of polaron an
gular modes would require new idealizations. A ‘‘viciou
circle’’ occurs which one could not leave without having
substantially change the model itself. Thus, despite the o
ous advantages of the ion-in-capsule model, namely, simp
ity and a high forecasting skill, we have to recognize
limitations and seek for other solutions.

One of them hinges on the use of conservation laws in
dynamics of rotating solids. Rotation of a solid is describ
by the equation

dL

dt
5K , ~1!

whereL is the angular momentum,K is the sum of torques
acting on the solid. Consider for simplicity a symmetric g
roscope rotating around one of its main axes of inertia wit
forceF acting on its point of support, as shown in Fig. 2. T
moment of this force about the shown axis is obviously ze
From Eq.~1! we have

L5L01dL , dL5Kdt5r3Fdt.

SinceK'F, thendL'F, i.e., the force caused an orthogon
displacement of the axis of rotation. Also, the vectorr is
directed along the axis of rotation, therefore the vectordL is
also orthogonal withL0.

Thus, a continuously acting forceF causes a forced pre
cession of the gyroscope about the directionF with an angu-
lar velocity defined by the angle through which the gyr
scopic axis of rotation deviates per unit time, viz,
2-2
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MOLECULAR GYROSCOPES AND BIOLOGICAL EFFECTS . . . PHYSICAL REVIEW E 65 051912
Vprecession5
dL /L0

dt
5

K

L0
5

rF

L0
.

The length of vectorr is defined by the gyroscope lockin
conditions. If pointB is fixed, then the origin ofr coincides
with B. If point B is free, then the origin ofr is on lineAB
and depends on the gyroscope parameters. For estimati
is important thatr has the order of magnitude of the gyr
scope length.

Let the gyroscope be a model of a rigid molecule free
move and constrained by the thermal oscillations of one
the point of support~e.g., A) alone. We estimate the mea
gyroscope axis deviation angle for a random forceF causing
chaotic oscillations of its point of support. It should be not
that the gyroscope gravity energy;MgR is many orders of
magnitude below its kinetic energy;L2/2I and the effects of
gravity may be neglected. In the last formulas,M ,R, and I
are the gyroscope mass, size, and moment of inertia, andg is
the acceleration due to gravity.

The energy of natural gyroscope rotation is«05L0
2/2I .

The gyroscope energy including chaotic rotations is«0
1kBT. On the other hand, the mean energy with allowan
for orthogonality ofL0 anddL is

K 1

2I
~L01dL !2L 5

1

2I
$L0

212^L0dL &1^d2L &%

5«01
^d2L&

2I
, ~2!

where brackets mean averaging over the ensemble. T
^d2L&/2I;kBT. Denoting the average deviation angle bya
5A^d2L&/L0 yields a2;2IkBT/L0

2. The smallerL0 is the
larger is the random deviations of a molecule caused by t
mal perturbations of its support. Such a support is the co
lent bond with the body of protein molecule. Low boun
estimates ofL0 follow from the Heisenberg uncertainty prin
ciple that, for a complementary pair of noncommuting ope
tors of angular variablew and angular momentumL
;d/dw, can be written as

DLDw;\/2.

FIG. 2. Forces, moments of forces, and angular momenta
rotation of a gyroscope.
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SinceDw;p, thenDL;\/2p; thus the angular momentum
cannot be smaller than its uncertainty, i.e.,L0;\/2p. Fi-
nally, we have

a2;8p2
IkBT

\2
.

As can be seen, the deviations increase with the increa
size of the molecule; however, even for small molecules,
estimate of deviation is unrealistically large. It implies th
in lower rotation states, molecules will ‘‘lay aside’’ in re
sponse to perturbation of their support and, consequently
angular momentum will not be conserved. It should be no
that we are interested only in angular states with small qu
tum numbers. Otherwise the interference patterns to be
cussed below become fine grained and are unlikely to
reflected in the measured properties.

Thus, in order to be immune to the thermal displaceme
of supports, the gyroscope has to have its second sup
also fixed in the protein matrix. The configuration of a rota
ing solid with supports fixed in the rim is one of the types
a gyroscope, i.e., a device to measure the angular displa
ments and the velocities. What we consider is essential
molecular gyroscope: a relatively large molecular group
placed in a protein cavity and its two edges form coval
bonds~supports! with the cavity walls. It is important to note
that the thermal oscillations of the supports produce o
zero moments of forces about the natural group rotation a
Therefore, the gyroscopic degree of freedomw is not ther-
malized by the supports’ oscillations. This does not imp
that the energy of the gyroscope does not dissipate. Radia
damping or Lorentz friction force is neglected, because of
infinitesimal value. Below we examine at first the interfe
ence of the molecular gyroscope and then the damping
to the van der Waals forces.

III. INTERFERENCE OF THE MOLECULAR GYROSCOPE

Rotations of large molecules is a much slower proc
than the electron and oscillatory processes. Therefore,
think of the rotating molecular group as a rigid system
charged point masses—atoms and molecules with part
polarized chemical bonds. To illustrate, we point to m
ecules of amino acids, which could be built into rather sp
cious protein cavities forming chemical bonds at extre
ends of the molecule, thus forming a molecular gyrosco
Amino acids are links of polymeric protein macromolecul
and also occur in a bioplasm as free monomers. The gen
formula of amino acids is well known,

R

u

H2N
1—CHuCOHO2,

where R is a radical that distinguishes one molecule fro
another. Polarities of the groups are shown in a water s
tion. By way of example, the radical of amino glutaric ac
consists of three linksuCH2uCH2uCOOH, as shown in
Fig. 3. Fixed on either side of a cavity, such a molecu

in
2-3
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treated as a dynamic unit, has one degree of freedom
polar anglew, which simplifies the analysis of its behavior
a magnetic field.

For small velocities, the Lagrange function of one cha
particle has the form

L5
Mv2

2
1

q

c
A•v2qA0 , ~3!

wherev is the particle velocity, andq is a charge. Let the
magnetic fieldH5(0,0,H) be directed along thez axis, and
the particle be bounded by a holonomic constraint causing
circumferential motion in thexy plane. In spherical coordi
nates, the constrains can be written in the form

r 5R5const, u5p/2. ~4!

We choose the vector vector potential in the form

A5S 2
1

2
Hy,

1

2
Hx, 0D . ~5!

With allowance for constraints~4!, the velocity of a particle
in spherical coordinates will bev5Rẇ, and the velocity vec-
tor in Cartesian coordinates is

v5„2Rẇ sin~w!,Rẇ cos~w!,0…. ~6!

Substituting this expression in Eq.~3!, we obtain the
Lagrange function in spherical coordinates,

L5
MR2ẇ2

2
1

qH

2c
R2ẇ2qA0 . ~7!

Now, the generalized momentum isl 5]L/]ẇ, and the
Hamilton functionH5 l ẇ2L is equal to

H5
1

2MR2 S l 2
qH

2c
R2D 2

1qA0 . ~8!

In the absence of an electromagnetic fieldH5 l 2/2MR2, and
it is obvious thatl is the angular momentum of the particl
The Hamiltonian operator repeats~8! with the difference that
herel is the angular momentum operatorL52 i\]/]w.

FIG. 3. An amino glutaric acid molecule with potentially ioniz
ing groups. Thez axis is the main axis of inertia. Rotation o
charges distributed over the molecule in a magnetic field lead
interference of its quantum angular states.
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Let now a few particles rotate and, in a spherical syst
of coordinates, the constraints for particlei be

r i5const, u i5const

Then, for a system of particles in a uniaxial magnetic fie
the Lagrange function can be written following the deriv
tion of formula ~7! as

L5
I

2
ẇ21

HQ

2c
ẇ2(

i
qiA0~r i ,u i ,w i !, ~9!

where

I 5(
i

M ir i
2sin2~u i !, Q5(

i
qi r i

2sin2~u i ! ~10!

is the moment of inertia, and ‘‘charge moment of inertia’’
the system about the axis of rotation. As can be seen,
Lagrange function of the system follows from the Lagran
function ~7! after formal replacement ofMR2 with I, qR2

with Q, and qA0 with the respective sum. Therefore, th
Hamiltonian of the system immediately follows from Eq.~8!
after similar substitutions,

H5
1

2I S L2
QH

2c D 2

1(
i

qiA0~r i ,u i ,w i !.

We assume further that the electric field is absent, i.e.,
A050,

H5
1

2I S L2
QH

2c D 2

.

In addition toL 2/2I , we find here two more operators. The
are certain grounds to neglect the term proportional
squaredH. From the ratios of coefficients at the terms qu
dratic and linear inH we obtainQH/4c\;1027, where, for
estimation purposes, we letQ;eR2, R;1027 cm, H
;1 G. Dropping this term we write the Hamiltonian in
convenient form,

H5
L 2

2I
2v~ t !L, v~ t ![

QH

2Ic
. ~11!

The eigenfunctions and energies of the time-independent
of Hamiltonian~11! are

um&5
1

A2p
exp~ imw!, m50,61, . . . , «m5

\2

2I
m2.

We now consider the ensemble of gyroscopes that featur
density operators obeying the Liouville equation

i\ṡ5Hs2sH, s5(
a

w(a)s
(a). ~12!

to
2-4
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Some physical quantities, such as the intensity of a spo
neous emission or the radiation reemitted by an ensem
are known to linearly depend on the density matrix of t
ensemble,

smm85(
a

w(a)smm8
(a) .

The probability of biochemical reaction that we exami
here is not a quantity of that sort. The reaction probabi
does not directly depend on the density matrix of the
semble. It is rather the probability of the reaction of a gy
scope averaged over that ensemble. Therefore, at firs
will find the density matrixsmm8

(a) of theath gyroscope, then
the reaction probability of that gyroscope that nonlinea
depends onsmm8

(a) , and at last we will average the result ov
the gyroscope ensemble.

Let the ensemble consist of gyroscopes that appear w
constant rate at random moments of time. We assume
new gyroscopes appear in a quantum state that is a sup
sition of the states close to the ground one, i.e.,

smm8
(a)

~0!5H const, m,m8;1,

0, m,m8;” 1.

In the process of thermalization, the levels turn out to
populated with the energies up to«m;kBT, i.e., with num-
bers up tom;(1/\)AIkBT;103 for gyroscopes with the in-
ertia moments of the order ofI;1035 g cm2. However, we
are interested in the dynamics of the lowest states, that
could result in observable effects.

In the representation of the eigenfunctions ofH0 the den-
sity matrix equation may be written from Eqs.~11! and~12!
as

ṡmm852~Gmm81 ivmm8!smm8

2
i

\ (
l

~Vmls lm82smlVlm8!, ~13!

where

vmm85
\

2I
~m22m82!, Vml52\v~ t !mdml .

Phenomenological relaxation of the density matrix eleme
is taken into account, through the damping constantsGmm8 .
Because of the relaxation the elementssmm8 of the lowest
modes decrease while those of the upper modes increas
far as the stationery dynamics of a separate gyroscope is
of interest, we do not allow for the pumping upper mod
i.e., population redistribution into the states with large nu
bersm.

Substitution of the above relations in Eq.~13! gives rise to
the equation

ṡ52Gs1 is@~m2m8!v~ t !2v#,
05191
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where indicesm,m8 are temporarily omitted for conve
nience. Along with notation

g~ t ![2G1 i f , f [~m2m8!v~ t !2v,

the equation takes the straightforward formṡ5g(t)s. In the
solution of that equations5Cexp@*g(t)dt#, the constantC
follows starting conditions.

Let the MF possess both dc and ac parts, then

v~ t !5vg~11h8 cosVt !, vg[
QHdc

2Ic
, h8[

Hac

Hdc
.

Now we separate constant and alternating parts ing(t),

g~ t !52x1 izV cosVt, x[G1 iv2 i ~m2m8!vg ,

z[~m2m8!vg

h8

V
5~m2m8!

h8

V8
, V8[

V

vg
.

The integral equals

E g~ t !dt5E ~2x1 izV cosVt !dt52xt1 iz sinVt,

hence

s5s~0!e*g(t)dt5s~0!e2xteiz sin Vt

5s~0!e2xt(
n

Jn~z!einVt.

Restoring indicesm,m8, we arrive at the equation

smm85smm8~0!exp$2[Gmm81 ivmm82 i (m2m8)vg#t%

3(
n

Jn~zmm8!e
inVt.

Further, all the damping constants are assumed to equaG.
With the notation

b[G1 ivmm82 i ~m2m8!vg2 inV,

we rewrite the last equation in the form

smm85smm8~0!(
n

Jn~zmm8!e
2bt

that will be used later.
Now we consider the probability density of a gyrosco

to take an angular positionw, which is the only favorable
position of the rotating group of the gyroscope to react w
the active site on the wall
2-5
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V. N. BINHI AND A. V. SAVIN PHYSICAL REVIEW E 65 051912
p~ t !5C* ~ t,w!C~ t,w!

5
1

2p (
m

cm* ~ t !e2 imw(
m8

cm8~ t !eim8w

5
1

2p (
mm8

smm8e
2 i (m2m8)w,

that is,

p~ t !5
1

2p (
mm8n

smm8~0!e2 i (m2m8)we2btJn~zmm8!.

It is expedient to perform a sliding averaging in order
smooth out the relatively fast oscillations: they do not aff
the active site that features character time constantt, i.e.,

pt~ t !5
1

2tEt2t

t1t

p~ t8!dt8.

Virtually, the factor exp(2bt) should be averaged,

~e2bt!t5
sinh~bt!

bt
e2bt,

therefore

pt~ t !5
1

2p (
mm8n

smm8~0!
sinh~bt!

bt

3e2 i (m2m8)we2btJn~zmm8!. ~14!

Then, as in the ion interference model, we assume the r
tion probability of a side group of the rotating molecule wi
the protein active site to be a nonlinear function of the pr
ability density~14!. In the absence of whatever informatio
on that function, it makes sense to consider quadratic n
linearity, since the linear term makes no contribution to t
probability, see details in Ref.@20#. To find the reaction prob-
ability we will square Eq.~14! and take the average over th
gyroscope ensemble.

In the productpt(t)pt(t) there are~i! complex conjugate
terms, i.e., pairs with indicesn,m,m8 and2n,m8,m, which
apparently do not oscillate, and~ii ! fast-oscillating terms tha
we omit in view of the subsequent averaging. Omitting a
the immaterial numerical coefficient, we write

pt
2~ t !.e22Gt (

mm8n

usmm8~0!u2Usinh~bt!

bt U2

Jn
2~zmm8!.

In this expression, the multiplier

S[ (
mm8n

usmm8~0!u2Usinh~bt!

bt U2

Jn
2~zmm8!

contains the magnetic field dependence.
Let a gyroscope appear in a moment of timet8, then the

reaction probability at timet equals
05191
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u~ t,t8!5H Se22G(t2t8), t>t8

0, t,t8.

Assuming the moments of timet8 to be distributed over the
gyroscope ensemble in the interval (2u,u) with a uniform
densityw @instead of a discrete distribution forw(a) in Eq.
~12!#, we find the mean probabilityP by proper integrating
over the parametert8,

P5 lim
u→`

wE
2u

u

u~ t,t8!dt85
wS

2G
.

To link this value to an observable, e.g., a concentration
the reaction products, we write the kinetic equation for t
numberN of gyroscopes per unit of tissue volume,

Ṅ5w2PN

that givesN5w/P52G/S in stationery conditions. LetS0
andN0 stand for corresponding quantities in the absence
an ac MF, i.e., ath850. We would like to know the relative
changer of the concentration of the reaction products und
the ac MF influence. This is the relative number of gyr
scopes entering the reaction, i.e.,

r[
N02N

N0
512

S0

S
. ~15!

We now estimate the values ofS andr. The following nota-
tion will be used:

bt[h1 i j, h[Gt, j[@vmm82~m2m8!vg2nV#t.

Then the expression forS takes the form

S5 (
mm8n

usmm8~0!u2
sinh2h1sin2j

h21j2
Jn

2S ~m2m8!
h8

V8
D .

~16!

Since h is a constant, the frequency spectrum is defin
mainly by the equationj50, i.e.,

vmm82vg~m2m8!2nV50.

For arbitrary smallm, m8 frequenciesvmm8 fall into the
microwave range. The effects of low-frequency MFs are
fined by the interference of the levelsm852m, when
vmm850. Then

vg~m2m8!1nV50,

from which we find

V85
2m

n
. ~17!

The series overn in Eq. ~16! converges quickly, therefore th
terms withn51 mainly contribute to the reaction probabi
ity. So, at frequencies where the probability gains maxi
(V852m) contributions of those terms equal
2-6
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Sm[usm,2m~0!u2
sinh2~Gt!

G2t2
J1

2~h8!.

Contributions of the terms withn52,

usm,2m~0!u2
sinh2~Gt!1sin2~6mvgt!

t2~G2136m2vg
2!

J2
2~2h8!,

obviously, are more than order of value smaller, in the c
of vg*G, i.e., when it makes sense to examine the inter
ence in general. Thus, in order to make approximate ass
ments we omit the terms withn.1. Then, for the same
reason, for the ground statem50, only contributions of the
terms withn50 are essential. It is those terms that make
contribution independently of an ac MF,

S05us00~0!u2
sinh2~Gt!

G2t2
.

As well, at a fixed frequencyV852m* only terms withm
52m85m* are essential in their contribution. Now th
relative change of the concentration of the reaction produ
is easy to estimate at the MF frequency, e.g.,V852m. Mak-
ing note ofJ21

2 (h8)5J1
2(h8) and allowing forS5S01Sm in

this case, from Eq.~15! we arrive at

r512F112
s2m,m

2 ~0!

s00
2 ~0!

J1
2~h8!G21

.

As is seen, the magnitude of the magnetic effect depend
the ratio of the density matrix elements at the initial mom
of time just after a gyroscope appears. For example, if
ground state and the statem ~out of Zeeman’s splitting! equi-
populated att510, then

r512
1

11J1
2~h8!

. ~18!

This function is shown in the Fig. 1, solid line. We conclu
that the positions of the maxima of the amplitude spectr
of the magnetic effect do not depend~and the relative mag
nitude of the effect does! on the distribution of the initial
populations of the gyroscope levels.

The spectrum~17! determines only possible locations
the extrema. A real form of the spectrum depends on
initial conditions for the density matrix, i.e., on the popul
tions of levels of different rotational quantum numberm.

It is instructive to note that the molecule need not hav
dipole moment( iqir i for the magnetic effect to appea
Rather, it is important that the ‘‘charge moment of inertia’’Q
~10! be other than zero. This can be the case in the abs
of dipole moment, e.g., for ionic rather than zwitterion
form of the molecule.

The main properties of the gyroscope interference
identical with those of the ion interference, namely,~i! mul-
tiple peaks in the amplitude and frequency spectra,~ii ! de-
pendence of the positions of frequency peaks on the dc
05191
e
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e

ts
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e

e
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ce

e

F

intensity, and~iii ! independence of the positions of amplitud
maxima on the ac MF frequency.

We note that the interference of a molecular gyrosco
has some features that distinguish it from the ion interf
ence. First, the peak frequencies are defined with respe
the gyral frequencyvg—a rotation equivalent to the cyclo
tron frequency. The peak frequencies depend on the distr
tion of the electric charges over the molecule and may de
ate from harmonics and subharmonics of the cyclot
frequency. Second, the gyroscope rotation axis is fixed w
respect to the shell, which introduces, in the general ca
one more averaging parameter in the model. However, th
features are not of principal significance. The specific pr
erties of the interference can always be calculated for
configuration of magnetic and electric fields, for rotation
biological systems and macromolecules involved, etc.

There is the crucial feature of the gyroscope interferen
molecular gyroscopes are relatively immune to thermal sh
ing and may be effective biophysical targets for exter
MFs.

As is seen from Eq.~16!, the absolute magnitude of th
magnetic effect, where the latter is maximized by the M
parameters, depends mainly on the valueh5Gt, which
should be minimized for greater effects. The protein react
time t and the MF frequencyV have to fulfill the relation
Vt*1 in order to manifest an interference. This and t
properties of the function sinh2h/h2 lead to the condition of
observability

G21*V21;0.01 s ~19!

for the ELF range. The following section examines if th
condition is real.

IV. ESTIMATING RELAXATION TIME
FROM MOLECULAR DYNAMICS

Computer simulation of molecular gyroscope behavior
dicates that, for relaxation times of order 0.01 s, the size
the cavity should be below 30 Å.

We consider the amino acid residue phenilalanin~Phe!
CaC6H5, as a gyro and look at the revolution of its benze
ring C6H5 about the valence bond Ca—Cb ~see Fig. 4!. This
revolution may be thought of as a rotation in one plane
two rigidly bound point massesm526mp (mp is the mass of
proton!, spaced bya52.42 Å from one another, about the
common center of gravity.

We model the cavity by four heavy particles of massM
>m placed at the corners of a square~diagonalb.a) cen-
tered on the gyroscope axis, as shown in Fig. 5. We ass
that these particles oscillate in the gyroscope rotation pl
xy. Each particle moves in the potential wellU(xi ,yi),
wherexi , yi is the deviation of particlei from its equilibrium
state. The Hamilton function for this system has the form

H5
1

2
I ḟ21(

i 51

4 F1

2
M ~ ẋi

21 ẏi
2!1V~f,xi ,yi !1U~xi ,yi !G ,

~20!
2-7
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whereI 5 1
2 ma2 is the gyroscope moment of inertia, andf is

its revolution angle.
We take the potential of interaction of particlei with the

gyroscope as the sum of two Lennard-Jones potentials,

V~f,xi ,yi !5e$@~r 0 /r 1!621#21@~r 0 /r 2!621#2%,

wherer 0 is the equilibrium arm between a heavy and a lig
particle,r 1 is the instantaneous distance of a heavy partici
to the first particle of the gyroscope, andr 2 is the distance to
the second particle. The interaction of carbon atoms in po
meric macromolecules is commonly described by
Lennard-Jones potentials of the form

FIG. 4. Schematic representation of a molecular gyrosc
CaC6H5 reduced to a model of a two-particle rotor of diametera.

FIG. 5. A two-dimensional model of a gyroscope in a molecu
cavity of diameterb formed by four heavy particles of massM.
05191
t

-
e

VLJ~r !54e0@~s/r !122~s/r !6#,

with s53.8 Å ande050.4937 kJ/mol@25,26#. Recogniz-
ing that each particle of the gyroscope consists of two car
atoms, we lete51 kJ/mol'2e0 and r 054.5 Å'21/6s.

The carrier potential for each heavy particle will be tak
in the form

U~x,y!5
1

2
K

x21y2

12~x21y2!/R0

,

whereK is the rigidity in particle-carrier interaction, andR0
is the maximum possible deviation radius of a heavy partic
In a protein macromolecule, the rigidity of atomic displac
ments isK54 N/m. We consider two maximum displace
ment values:R051 Å andR05`.

Assuming that the heavy particles alone are connec
with the thermostat, we obtain the equations of motion in
form

I f̈52
]H

]f
,

Mẍi52
]H

]xi
2G rMẋi1j i , ~21!

Mÿi52
]H

]yi
2G rM ẏi1h i , i 51,2,3,4,

where the system’s Hamilton function is given by Eq.~20!;
j i andh i are the random normally distributed forces~white
noise! describing the interaction of a heavy particlei with the
thermostat,G r51/t r is the friction factor, andt r is the par-
ticle velocity relaxation time. The correlation functions
random forces are

^j i~ t1!j j~ t2!&52MG rkBTd i j d~ t12t2!,

^h i~ t1!h j~ t2!&52MG rkBTd i j d~ t12t2!,

^j i~ t1!h j~ t2!&50.

Here,kB is the Boltzmann constant, andT is the thermostat
temperature.

We integrate the equation system~21! by the Runge-Kutta
method to the fourth order of accuracy with a constant in
gration stepDt. In this computation, the delta functiond(t)
is 0 for utu.Dt/2 and 1/Dt for utu,Dt/2, that is, the integra-
tion step corresponds to the correlation time of random for
Therefore, to use a system of Langevin equations, we n
that Dt!t r . Let the relaxation time bet r50.2 ps, and the
numerical integration step beDt50.0025 ps.

Let at the initial moment of timet50 the system be in the
fundamental state,

f~0!5f0 , xi~0!5ui , yi~0!5v i , ~22!

ḟ~0!50, ẋi~0!50, ẏi~0!50, i 51,2,3,4,

e

r

2-8
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where the coordinates of a steady state,f0 ,$ui ,v i% i 51
4 , are

determined as solutions to the minimization problem

H→ min
f,x1 , . . . ,y4

:ḟ[0,ẋ1[0, . . . ,ẏ4[0.

Thus, at time zero, the molecular gyroscope is not therm
zed.

Our objective is to estimate the average time of gyrosc
thermalization. It corresponds to the relaxation time of gy
scope rotation in a thermalized molecular system. For
purpose, we numerically integrate the equations of mot
~21! subject to the initial condition~22!.

The gyroscope thermalization at timet is characterized by
its current temperature

T1~ t !5I ^ḟ2~ t !&/kB ,

where bracketŝ•& imply averaging over independent rea
izations of random forcesj i(t),h i(t),i 51,2,3,4. To obtain
the average value, the system~21! was integrated more tha
10 000 times.

In turn, the thermalization of the system of heavy partic
is characterized by its current temperature

T2~ t !5
M

8kB
(
i 51

4

^ẋi
2~ t !1 ẏi

2~ t !&.

The time dependence of these temperatures is present
Fig. 6. At t50, the temperatures areT1(0)5T2(0)50. Fur-
ther on the time coordinate, they monotonously approach
thermostat temperatureT5300 K.

We will assume that the molecular subsystem is co
pletely thermalized if its current temperature exceeds 0.9T.
We determine the gyroscope thermalization timet1 as a so-
lution of the equationT1(t)50.99T, and the time of heavy
particle system thermalizationt2, as a solution of the equa
tion T2(t)50.99T. The gyroscope is thermalized by interac
ing with the system of heavy particles, therefore its therm
ization time will depend on the diameterb of the heavy

FIG. 6. Current mean temperature of the molecular thermo
T1 ~curve 1! and temperatures of its molecular neighborhoodT2

~curve 2! as functions of time. Thermostat temperatureT5300 K,
cavity diameterb511 Å, M5m, andR051 Å.
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particle system and will always exceed the heavy part
system thermalization time (t1.t2). Time t2 is almost inde-
pendent ofb and is dependent only on the relaxation tim
t r :t2'4t r .

We analyzed the behavior of the system forR051 Å,`
andM5m,100m. The dependence of gyroscope thermaliz
tion time t1 on cavity diameterb is shown in Fig. 7. It is
evident that, whatever the values ofR0 andM, the thermal-
ization time increases exponentially withb. If we extrapolate
this dependence to the range of largeb, we see that, atb
528232 Å, the thermalization time, and hence the gyr
scope relaxation timeG21, will be of the order of seconds
With this size of cavity, the molecular gyroscope will revolv
almost freely.

V. CONCLUSION

The molecular interfering gyroscope is a challenger
solving thekT problem as a probable mechanism of magn
tobiological effects. Indeed, the walls of a protein cavity
not interfere with the gyroscopic degree of freedom direc
via short-range chemical bonds. For cavities larger than 3
in size, the contribution to the relaxation from the van d
Waals electromagnetic forces, induced by wall oscillatio
is small. Radiation damping is negligibly small. Finally, th
oscillations of gyroscope supports produce a zero momen
forces about the axis of rotation and do not affect the ang
momentum. The gyroscopic degree of freedom is very s
to thermalize, its dynamic behavior is coherent, which giv
rise to slow interference effects. Of course, whether or
some more or less water-free cavities of the size of 30 Å
larger do exist remains an open question, but, what is es
tial, ELF magnetic field bioeffects are no longer a parado

The role of molecular gyroscopes could probably
played by short sections of polypeptides and nucleic ac
built inside globular proteins or in cavities between asso
ated globules. In this respect, it is interesting to look at

at

FIG. 7. Gyroscope thermalization timet1 computed as a func-
tion of the molecular cavity diameterb at M5m,R051 Å ~sym-
bols 1!; M5m,R05` ~symbols 2!; M5100m,R05` ~symbols 3!,
and extrapolation of this function to largeb ~curve 4!.
2-9
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Watson-Crick pairs of nitrous bases~adenine-thymine and
guanine-cytosine! that bind the DNA strands into a doub
helix as well as some other hydrogen-bound complexes
nitrous bases. Their rotations are hampered by steric fac
However, in the realm of activity of special DNA enzyme
steric constraints may be lifted to allow a relatively free r
tation of molecular complexes. It is not yet clear whether
not the gyroscope type of molecular structures exists. T
are unlikely to be detected by x-ray methods since th
require crystallization of proteins for structural analysis.
this state, the rotation would likely be frozen. Should a ro
a-
0

to

J.

le

A

E
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y

y
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tion be allowed, the mobile groups would not give clear c
reflections. Some other methods are needed, which wo
work with native forms of proteins avoiding distortions du
to crystallization.

Generally speaking, the fact that the molecular gyrosc
model gives a physically consistent explanation of MB
proves indirctly its real grounds. Further studies sho
verify whether this conclusion is correct. In any case, tod
the interfering molecular gyroscope is a single availa
mechanism to give explanations that would be physica
transparent and generally agreeable with experiments.
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