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Molecular gyroscopes and biological effects of weak extremely low-frequency magnetic fields
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Extremely low-frequency magnetic fields are known to affect biological systems. In many cases, biological
effects display “windows” in biologically effective parameters of the magnetic fields: most dramatic is the fact
that the relatively intense magnetic fields sometimes do not cause appreciable effect, while smaller fields of the
order of 10-100x T do. Linear resonant physical processes do not explain the frequency windows in this case.
Amplitude window phenomena suggest a nonlinear physical mechanism. Such a nonlinear mechanism has
been proposed recently to explain those “windows.” It considers the quantum-interference effects on the
protein-bound substrate ions. Magnetic fields cause an interference of ion quantum states and change the
probability of ion-protein dissociation. This ion-interference mechanism predicts specific magnetic-field fre-
quency and amplitude windows within which the biological effects occur. It agrees with a lot of experiments.
However, according to the mechanism, the lifetife! of ion quantum states within a protein cavity should
be of unrealistic value, more than 0.01 s for frequency band 10—-100 Hz. In this paper, a biophysical mecha-
nism has been proposed, whi¢h retains the attractive features of the ion interference mechanism, i.e.,
predicts physical characteristics that might be experimentally examinediiancdes the principles of gyro-
scopic motion and removes the necessity to postulate large lifetimes. The mechanism considers the dynamics
of the density matrix of the molecular groups, which are attached to the walls of protein cavities by two
covalent bonds, i.e., molecular gyroscopes. Numerical computations have shown almost free rotations of the
molecular gyroscopes. The relaxation time due to van der Waals forces was about 0.01 s for the cavity size of
28 A.
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[. INTRODUCTION due to the interference between quantum states of ions in a

protein binding cavity. In a dc MF the pattern rotates with the

Weak static and extremely low-frequendLF) magnetic ~ cyclotron frequency. Exposure to a time-varying MF of spe-
fields (MFs) can affect living things: cells, tissues, physi- Cific parameters retards the rotation of the pattern and facili-
ological systems, and whole organisfis-3]. In many cases tates escape of the ion from the cavity. This escape might

biological effects of weak MF feature a resonancelike multi_influence the equilibrium of the biochemical reactions to ul-
: . : .__timately result in a biological effect.
peak behavior. Multipeak responses or magnetob|olog|catf Biologically effective parameters of ac-dc magnetic fields

spectra may appear with vgrying the frequency or amplitud%e end on the charge-to-mass ratio of the ion in question.
of ac“M_F[4] arld_ the magnitude of dc ME5]. Usually, the Thg closed formula |gs derived for “magnetic” paft ofqthe
term wmdows is used ”for the peaks of the spectra. ion-protein dissociation probability. Predictions based on this
_ Amplitude “windows,” see Fig. 1, specify the nonlinear- ¢omy|a reveal good agreement with the experimental results
ity of the transduction mechanisms involved in magnetob|o1m,o|\,ing calcium, magnesium, potassium, hydrogen, and
logical effects. This is confirmed more by the fact that thegther jons of as molecular targets for MF. The theory de-
magnetic noise simultaneously superimposed on a regulajcribes multipeak frequency and amplitude spectra of MBEs
magnetic signal suppresses the biological effect of that signahvolving ions of C&*, Mg?", and H" as molecular targets
[16-19. for ac-dc MFs[20].

A nonlinear mechanism based on the quantum interfer- The interference mechanism is surprisingly effective in
ence has been developed in R&0] to explain the unusual retrospectively predicting the results of existing experiments
ELF MF frequency and amplitude dependencies of magneeonducted under the following defined MF conditions: par-
tobiological effectstMBES). The mechanism elaborates the allel ac-dc and pulsed MAK0,21], “null” and static MFs
interference of ions bound within proteins. According to this[22], and various MFs with a slow rotation of a biological
mechanism, superposition of the ion states forms a nonunsystem[23]. As an example, Fig. 1 demonstrates the com-
form pattern of the probability density of ion. This pattern parison of the experimental data, in parallel ac-dc MFs, on
consists of a row of more or less dense segments occurringBEs involving fixed and rotating proteins, and calculated

curves(dashed and solid lings
The good consistency between the theoretical calculations

*Electronic address: Binhi@biomagneti.com; and many experiments indicates that what underlies magne-
http://www.biomagneti.com tobiological effects is most likely an interference phenom-
"Electronic address: asavin@center.chph.ras.ru enon|24].
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& f‘ffgj;hf[;ﬁ - FIG. 1. Experimental evidencg6—15 for
) — this work —_ MBEs in a uniaxial MF(Ref. [7] noted a weak
—gj ‘§ perpendicular component of a dc MHA heoreti-
E = cal amplitude spectra: a dashed line was derived
= {‘; for fixed ion-protein complexe@actor «=1 was
% not shown and also for rotating ion-protein com-
2 - plexes, see details in R4R23]. Solid line repre-
sents the functiori18) derived for gyroscope in-
terference.
O'Hchan
According to the interference mechanism, the relation Il. MOLECULAR GYROSCOPE

. 71 71 . . . .
shoultd be \t/atllcf _t(;_czlbwhe(;el“ .t'S the I_|fet|me ?ft'on A long lifetime of the angular modes is the sole serious
quantum states within a bound cavity afid is a cyclotron idealization underlying the mechanism of ion interference.

frequency of an ion in the geomagnetic field, usually 10-10Crh;g jgealization would be hard to substantiate with the ion-
Hz. The postulate therefore has to be made that the ion quagh_protein-capsule model. One would have to assume that the
tum states, more exactly their angular modes, live more thapy, forms bound states of the polaron type with capsule
0.01 s within the cavity. However, it is in contradiction with \wajls. In turn, justification of a large lifetime of polaron an-
our common knowledge that such states might live only forgular modes would require new idealizations. A “vicious
10" *-10"'° s because of the thermalizing interaction of circle” occurs which one could not leave without having to
the ion with the cavity walls. On the other hand, the weak agubstantially change the model itself. Thus, despite the obvi-
MF, £Q.<kgT, is commonly believed to be unable to con- ous advantages of the ion-in-capsule model, namely, simplic-
tribute to the thermally driveribio)chemical reactiongthe ity and a high forecasting skill, we have to recognize its
so-calledk T-problem). limitations and seek for other solutions.

To overcome the problem, we note that there is a specific One of them hinges on the use of conservation laws in the
mechanism that provides relatively large lifetime of the an-dynamics of rotating solids. Rotation of a solid is described
gular modes. Consider a dipole molecular group that is atby the equation
tached within the cavity to its walls in two points, i.e., by
two covalent bonds, thus forming a group that may rotate d_L:
inside the cavity without contact with walls. Such a construc- dt
tion is referred to as a gyroscope. In the present case, it is a ) ]
molecular gyroscope. Of importance is the fact that the therwhereL is the angular momentunk is the sum of torques
mal oscillations of that covalent bonds, or gyroscope’s sup&cting on the solid. Consider for simplicity a symmetric gy-
ports, make only zero torque about the axis of rotation. Thi 0SCope rqtatmg groun_d one of its main axes Of |ne_rt|a with a
leads to relatively slow thermalization of a gyroscopic de- orceF actlnglon its point of support, as shoyvn in F|g. 2. The
gree of freedom. Relaxation is mainly due to van der Waal oment of this force about the shown axis is obviously zero.
; . : . . . rom Eq.(1) we have
interaction with thermalizing walls. As far as the interaction
potential, the Lennard-Jones potential, decreases &snd _ _ _
the walls’ inner surface grows a<, the overall van der L=lotdL, dL=Kdt=rxFdt.

Waals contribution varies approximately ms*. That is, the  SinceK LF, thendL LF, i.e., the force caused an orthogonal
relaxation quickly diminishes with incresing cavity size. displacement of the axis of rotation. Also, the vectors

Computations show almost free rotatiofthermalization  directed along the axis of rotation, therefore the vedioris
time 0.01 $ of a molecular gyroscope within the cavity of 28 also orthogonal with_ .

A size. This is enough for the ion interference mechanism to  Thus, a continuously acting forde causes a forced pre-
display itself. Probably, such spacious cavities are formed bgession of the gyroscope about the direcffowith an angu-
ensembles of a few protein globules, between them, olar velocity defined by the angle through which the gyro-
within some enzymes that unfold the DNA double helix.  scopic axis of rotation deviates per unit time, viz,

K, @
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Tl »F SinceA ¢~ 7, thenAL ~#/27; thus the angular momentum
A‘ - cannot be smaller than its uncertainty, i.eg~#/27. Fi-
Sae nally, we have
1( ) IkgT
R a’~8m? .
. pe

As can be seen, the deviations increase with the increasing
size of the molecule; however, even for small molecules, the
estimate of deviation is unrealistically large. It implies that,
in lower rotation states, molecules will “lay aside” in re-
B sponse to perturbation of their support and, consequently, the
angular momentum will not be conserved. It should be noted
FIG. 2. Forces, moments of forces, and angular momenta inhat we are interested only in angular states with small quan-

rotation of a gyroscope. tum numbers. Otherwise the interference patterns to be dis-
cussed below become fine grained and are unlikely to be

dL/Ly K rF reflected in the measured properties.
precessiom ¢~ |7 L, Thus, in order to be immune to the thermal displacements

of supports, the gyroscope has to have its second support

The length of vector is defined by the gyroscope locking also fixed in the protein matrix. The configuration of a rotat-
conditions. If pointB is fixed, then the origin of coincides "9 solid with supports fixed in the rim is one of the types of
with B. If point B is free, then the origin of is on lineAB ~ &9Yyroscopei.e., a device to measure the angular displace-
and depends on the gyroscope parameters. For estimation rqents and the velocmes What we consider is essentially a
is important that has the order of magnitude of the gyro- molecular gyroscope: a relatively large molecular group is
scope length. placed in a protein cavity and its two edges form covalent
Let the gyroscope be a model of a rigid molecule free toPonds(support$ with the cavity walls. It is important to note

move and constrained by the thermal oscillations of one ofat the thermal oscillations of the supports produce only
the point of supporte.g.,A) alone. We estimate the mean zero moments of forces about the natural group rotation axis.
gyroscope axis deviation angle for a random fdfogausing | herefore, the gyroscopic degree of freedgris not ther-

chaotic oscillations of its point of support. It should be noted™alizéd by the supports’ oscillations. This does not imply
that the gyroscope gravity energyMgR is many orders of that the energy of the gyroscope does not dissipate. Radiation

magnitude below its kinetic energyL?/2| and the effects of F’a_m.p'“g or Lorentz friction force is qeglecte_d becaL_Jse of its
gravity may be neglected. In the last formulaé,R, and| infinitesimal value. Below we examine at first the mtgrfer—
are the gyroscope mass, size, and moment of inertiagad ence of the molecular gyroscope and then the damping due
the acceleration due to gravity. to the van der Waals forces.

The energy of natural gyroscope rotationsig= L§/2I.
The gyroscope energy including chaotic rotationssig ' INTERFERENCE OF THE MOLECULAR GYROSCOPE

+kgT. On the other hand, the mean energy with allowance Rotations of large molecules is a much slower process

for orthogonality ofL, anddL is than the electron and oscillatory processes. Therefore, we

think of the rotating molecular group as a rigid system of

charged point masses—atoms and molecules with partially

polarized chemical bonds. To illustrate, we point to mol-

ecules of amino acids, which could be built into rather spa-

<d2L> 2 cious protein cavities forming chemical bonds at extreme
21 ) ends of the molecule, thus forming a molecular gyroscope.

Amino acids are links of polymeric protein macromolecules

where brackets mean averaging over the ensemble. Theé#d also occur in a bioplasm as free monomers. The general

(d?L)/21 ~kgT. Denoting the average deviation angle &y formula of amino acids is well known,

= {(d?L)/L, yields a®~2lkgT/L3. The smallerL, is the R

larger is the random deviations of a molecule caused by ther-

mal perturbations of its support. Such a support is the cova- |

lent bond with the body of protein molecule. Low bound H,N*—CH—COHO™,

estimates ot follow from the Heisenberg uncertainty prin-

ciple that, for a complementary pair of noncommuting operawhereR is a radical that distinguishes one molecule from

tors of angular variablep and angular momentunC  another. Polarities of the groups are shown in a water solu-

1 2 1 2 2
57 (Lot dL)? ) = oo {LE+2(LodL) +(dL)}

:80+

~d/d¢, can be written as tion. By way of example, the radical of amino glutaric acid
consists of three links—CH,—CH,—COOH, as shown in
ALAp~1/2. Fig. 3. Fixed on either side of a cavity, such a molecule,
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Let now a few particles rotate and, in a spherical system
of coordinates, the constraints for particlbe

ri=const, 6;,=const
Then, for a system of particles in a uniaxial magnetic field,

the Lagrange function can be written following the deriva-
tion of formula(7) as

l. HQ.
L= §<Pz+ 2_S<P_E, QiA(ri, 0, 0i), 9
FIG. 3. An amino glutaric acid molecule with potentially ioniz- :
ing groups. Thez axis is the main axis of inertia. Rotation of
charges distributed over the molecule in a magnetic field leads t§/here
interference of its quantum angular states.
o =2 Mrisird(6,), Q= qirr’si’(6,) (10
treated as a dynamic unit, has one degree of freedom—a i i : — :
polar anglep, which simplifies the analysis of its behavior in
a magnetic field. is the moment of inertia, and “charge moment of inertia” of
For small velocities, the Lagrange function of one chargehe system about the axis of rotation. As can be seen, the
particle has the form Lagrange function of the system follows from the Lagrange
Mo? g function (7) after formal replacement df1R? with I, qR?
L:T+EA'V_qA°’ (3) Wwith Q, and gA, with the respective sum. Therefore, the

Hamiltonian of the system immediately follows from E&)

. . . . after similar substitutions,
wherev is the particle velocity, and| is a charge. Let the

magnetic fieldH=(0,0H) be directed along the axis, and 1 QH\2
the particle be bounded by a holonomic constraint causing its H= _( L——| + E aiAo(ri, 6, 0p).
circumferential motion in thexy plane. In spherical coordi- 2l 2¢c i

nates, the constrains can be written in the form
We assume further that the electric field is absent, i.e., let
r=R=const, 0=m/2. (4  A,=0,
We choose the vector vector potential in the form 1 ( QH\?2

o F e

. (5

1 1
A= —EHy,EHX, 0
In addition to£ ?/21, we find here two more operators. There
With allowance for constraintg}), the velocity of a particle are certain grounds to neglect the term proportional to
in spherical coordinates will be=R¢, and the velocity vec- squaredH. From the ratios of coefficients at the terms qua-

tor in Cartesian coordinates is dratic and linear irH we obtainQH/4c~ 107, where, for
estimation purposes, we leD~eR’, R~10"' cm, H
v=(—Rg sin(¢),Re cog ¢),0). (6) ~1 G. Dropping this term we write the Hamiltonian in a

convenient form,
Substituting this expression in Eq3), we obtain the

Lagrange function in spherical coordinates, L2 QH
o

Hzﬁ—w(t)ﬁ, w(t) >lc (11

MR%2p? qH .
= —_ 2 -
L > + >C Reo—qAy. (7)

The eigenfunctions and energies of the time-independent part

] ) of Hamiltonian(11) are
Now, the generalized momentum liIs=dL/de, and the

Hamilton functionH=1¢—L is equal to 1 52
Imy=——=explime), mM=0,+1,..., gp=5-m>
1 | qH _, 2 V2 mo21
H= MR —ER +qAp. (8)

We now consider the ensemble of gyroscopes that features a

In the absence of an electromagnetic fielet122MR?, and ~ density operatorr obeying the Liouville equation

it is obvious that is the angular momentum of the particle.
The Hamiltonian operator reped® with the difference that iho=Ho—oH. o= 2 W o(@ (12)
herel is the angular momentum operatbe= —i%dldep. ’ = )
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Some physical quantities, such as the intensity of a spontavhere indicesm,m’ are temporarily omitted for conve-
neous emission or the radiation reemitted by an ensemblajence. Along with notation
are known to linearly depend on the density matrix of the

ensemble, g(ity=-T+if, f=(Mm-m)o(t)— o,

ot = 2 w(a)af;%, . the e_quation takes the_ straightforward fosr g(t) o. In the
@ solution of that equatiorr=Cexfd [g(t)dt], the constanC

. . . . ~ follows starting conditions.
The probability of biochemical reaction that we examine | gt the MF possess both dc and ac parts, then

here is not a quantity of that sort. The reaction probability

does not directly depend on the density matrix of the en- QH H
semble. It is rather the probability of the reaction of a gyro- w(t)=wy(1+h’ cosQt), wy,= dc, r=_2
scope averaged over that ensemble. Therefore, at first we 2lc Hac
will find the density matrixoc'®), of the ath gyroscope, then

- ity of The : N d alternati f
the reaction probability of that gyroscope that nonlinearlyNOW we separate constant and alternating parg(ty,

depends orarﬁfr)n, , and at last we will average the result over

the gyroscope ensemble. g(t)=—x+izQ cosQt, x=I't+tiw—i(m—m')oy,
Let the ensemble consist of gyroscopes that appear with a
constant rate at random moments of time. We assume the h' h'

new gyroscopes appear in a quantum state that is a superpo- z=(m-— m’)wgﬁ =(m—-m’) —, Q'=—.
sition of the states close to the ground one, i.e., Q

const, mm’'~1, The integral equals
iy (0)=
Tmm 0, m,m’ +1.
o f g(t)dtzf (—x+izQ cosQt)dt= —xt+iz sin(t,

In the process of thermalization, the levels turn out to be
populated with the energies up &,~kgT, i.e., with num-
bers up tom~ (1/#) \Ikg T~ 10° for gyroscopes with the in- hence
ertia moments of the order of~10°° gcn?. However, we

are interested in the dynamics of the lowest states, that only o=0(0)e/90dt= 5(0)e gz sin0t
could result in observable effects.
In the representation of the eigenfunctionsHyf the den- = o (0)e Xt inQt
. . : ; = e Jn(z)e™".
sity matrix equation may be written from Eq4.1) and(12) (0 zn: n(2)
as
) _ Restoring indicesn,m’, we arrive at the equation
Omm' = —(me/+|0)mmr)0'mm/
i O'mmrzﬂ'mmr(o)ex[){_[rmmr+iwmmr_i(m_ml)wg]t}
_%EI VniTim = omiVim?) s (13

X E Jn(zmm’)emm-
n
where

5 Further, all the damping constants are assumed to dgual
Oy =§(m2— m'2), Vo=—ho(t)Mdy. With the notation
) _ ) ) B=l'tiogy —i(m—m")ws—inQ,
Phenomenological relaxation of the density matrix elements
is taken into account, through the damping constéits, .
Because of the relaxation the elements,, of the lowest
modes decrease while those of the upper modes increase. As
far_as the stationery dynamics of a separate gyroscope is out Oy = Umm,(o)z Jn(Zmm )€ P
of interest, we do not allow for the pumping upper modes, n
i.e., population redistribution into the states with large num-

we rewrite the last equation in the form

bersm. o o that will be used later.
Substltgtlon of the above relations in E@23) gives rise to Now we consider the probability density of a gyroscope
the equation to take an angular positiop, which is the only favorable
) position of the rotating group of the gyroscope to react with
o=—To+io[(m—m)w(t)—w], the active site on the wall

051912-5



V. N. BINHI AND A. V. SAVIN PHYSICAL REVIEW E 65051912

p(t)="*(t,p)V(t,¢) Se2lt-t) =t
1 AR P t<t’
=5- 2 ch(De ™ cr(e™Y ’
m m’ Assuming the moments of timé to be distributed over the
1 . / gyroscope ensemble in the intervat ¢,0) with a uniform
=5 > opye mmme, densityw [instead of a discrete distribution fov,, in Eq.
mm’ (12)], we find the mean probabiliti? by proper integrating
. over the parametdr,
that is,
1 P=1i fo t,t")dt’ wS
PO)= 5 S omm(0)e ™M A (2. A I T
mmn

To link this value to an observable, e.g., a concentration of

It is expedient to perform a sliding averaging in order 10e reaction products, we write the kinetic equation for the
smooth out the relatively fast oscillations: they do not affect, ;mperN of gyroscopes per unit of tissue volume

the active site that features character time constane.,
N=w—PN
1 (t+7
PA1)= Z_Tft,f p(t)dt" that givesN=w/P=2I'/S in stationery conditions. Le§,
andN, stand for corresponding quantities in the absence of

Virtually, the factor exp{ gt) should be averaged, an ac MF, i.e., ah’=0. We would like to know the relative
changep of the concentration of the reaction products under
st sinh(B7) _pt the ac MF influence. This is the relative number of gyro-
( )= BT e scopes entering the reaction, i.e.,
No—N Sy
therefore —_0 T _ 4.
p= N, 1 S (15
1 sinh(B7) ) )
pAt)=-— E T (0) ———— We now estimate the values 8fandp. The following nota-
2m o BT

tion will be used:

Xe*l(m*m )@efﬁtJn(me/). (14) BTE 77+|§' 7]EFT, §E[wmmr—(m—m’)wg—nﬂ]7.

Then, as in the ion interference model, we assume the reagnen the expression @ takes the form
tion probability of a side group of the rotating molecule with

the protein active site to be a nonlinear function of the prob- sint? 7+ sirfé '
ability density(14). In the absence of whatever information ~ S= E |O'mmr(0)|2T\]ﬁ (m—m’)—, .
on that function, it makes sense to consider quadratic non- mm'n n+E Q
linearity, since the linear term makes no contribution to that (16)

probability, see details in R€f20]. To find the reaction prob-
ability we will square Eq(14) and take the average over the
gyroscope ensemble.

In the productp,(t)p(t) there argi) complex conjugate Omm — wg(M—mM')—nQ=0.
terms, i.e., pairs with indices,m,m’ and —n,m’,m, which
apparently do not oscillate, aril) fast-oscillating terms that For arbitrary smallm, m’ frequenciesw,,,y fall into the
we omit in view of the subsequent averaging. Omitting alsomicrowave range. The effects of low-frequency MFs are de-
the immaterial numerical coefficient, we write fined by the interference of the levels’=—m, when

omm =0. Then

Since 7 is a constant, the frequency spectrum is defined
mainly by the equatiog=0, i.e.,

sin NG
pi(t):e—ZFt E |Umm’(0)|2$ Jﬁ(zmm’)- wg(m—m’)+nQ=O,

mm’n

: . - from which we find
In this expression, the multiplier

2m
sinh(B7)|? O'=—. (17)
8= 2 omm (05— J(zmm) n
mm’'n . . .

The series oven in Eq. (16) converges quickly, therefore the

contains the magnetic field dependence. terms withn=1 mainly contribute to the reaction probabil-
Let a gyroscope appear in a moment of timethen the ity. So, at frequencies where the probability gains maxima

reaction probability at timé equals (2" =2m) contributions of those terms equal
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sink(T' 7) intensity, andiii ) independence of the positions of amplitude
SmE|om,,m(0)|22—J§(h’). maxima on the ac MF frequency.
NS We note that the interference of a molecular gyroscope

has some features that distinguish it from the ion interfer-
ence. First, the peak frequencies are defined with respect to
. . the gyral frequencyw,—a rotation equivalent to the cyclo-
sink?(I" 7) + sinf(6mag 7) 32(2h") tron frequency. The Seak frequencies depend on the distribu-
(I2+ 36m2wg) 2 ' tion of the electric charges over the molecule and may devi-
ate from harmonics and subharmonics of the cyclotron
obviously, are more than order of value smaller, in the casérequency. Second, the gyroscope rotation axis is fixed with
of wy=T, i.e., when it makes sense to examine the interferrespect to the shell, which introduces, in the general case,
ence in general. Thus, in order to make approximate assessne more averaging parameter in the model. However, these
ments we omit the terms with>1. Then, for the same features are not of principal significance. The specific prop-
reason, for the ground state= 0, only contributions of the erties of the interference can always be calculated for any
terms withn=0 are essential. It is those terms that make theconfiguration of magnetic and electric fields, for rotation of

Contributions of the terms with=2,

|Um,—m(0)|2

contribution independently of an ac MF, biological systems and macromolecules involved, etc.
There is the crucial feature of the gyroscope interference:
5 sintfA(I'7) molecular gyroscopes are relatively immune to thermal shak-
So=|000(0)]| W ing and may be effective biophysical targets for external
MFs.

As well, at a fixed frequencf)’ =2m* only terms withm As is seen from Eq(16), the absolute magnitude of the
——m'=m* are essential in their contribution. Now the Magnetic effect, where the latter is maximized by the MF

relative change of the concentration of the reaction productB@rameters, depends mainly on the valgeI'7, which
is easy to estimate at the MF frequency, e(tf.=2m. Mak- should be minimized for greater effects. The protein reaction

ing note Osz_l(h,):Ji(h,) and allowing forS:SO+Sm in time 7 and the MF fl’equ_encﬁ h-aVG to fulfill the -I'E|a.t|0n

; ; Q7=1 in order to manifest an interference. This and the
this case, from Eq(15) we arrive at . . : .

properties of the function sikky/7? lead to the condition of
-1 observabilit
s () y
p=1—|1+2— Jihy| .
o00(0) r1=01001 s (19
As is seen, the magnitude of the magnetic effect depends . . . .
the ratio of the density matrix elements at the initial momen?fgng;t?oﬁli‘gr;rrge' The following section examines if the
of time just after a gyroscope appears. For example, if the '
ground state and the state(out of Zeeman’s splittingequi-
populated at=+0, then IV. ESTIMATING RELAXATION TIME
FROM MOLECULAR DYNAMICS

1 (18) Computer simulation of molecular gyroscope behavior in-

1+33(h") dicates that, for relaxation times of order 0.01 s, the size of
the cavity should be below 30 A.
This function is shown in the Fig. 1, solid line. We conclude \we consider the amino acid residue phenilala(fhe
that the positions of the maxima of the amplitude spectrunt, CHs, as a gyro and look at the revolution of its benzene
of the magnetic effect do not depefahd the relative mag-  ring C;Hs about the valence bond,&-C; (see Fig. 4 This
nitude Of the effect doeﬂ)n the distribution of the initial revolution may be thought of as a rotation in one p|ane of
populations of the gyroscope levels. two rigidly bound point masses= 26m,, (m, is the mass of

The spectrum(17) determines only possible locations of nroton, spaced bya=2.42 A from one another, about their
the extrema. A real form of the spectrum depends on theommon center of gravity.
initial conditions for the density matrix, i.e., on the popula-  \ve model the cavity by four heavy particles of mags
tions of levels of different rotational quantum numimar >m placed at the corners of a squdtkagonalb>a) cen-

It is instructive to note that the molecule need not have gered on the gyroscope axis, as shown in Fig. 5. We assume
dipole moment=;q;r; for the magnetic effect to appear. that these particles oscillate in the gyroscope rotation plane
Rather, it is important that the “charge moment_of inert@” xy. Each particle moves in the potential well(x;,y),

(10) be other than zero. This can be the case in the absenggherex, , y; is the deviation of particlefrom its equilibrium

of dipole moment, e.g., for ionic rather than zwitterionic giate. The Hamilton function for this system has the form
form of the molecule.

The main properties of the gyroscope interference are

p=1

4
. . . Lo 1 . 1 . .
identical with those of the ion interference, namély,mul- H= Z1 2+ MOV + V(X V) +U(X V.
tiple peaks in the amplitude and frequency spediia,de- 2'? ;1 MO+ FV(dx5 ) +U Y |
pendence of the positions of frequency peaks on the dc MF (20
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Viy(r)=4eol (o/r)*2= (alr)®],

o with 0=3.8 A ande,=0.4937 kJ/mol[25,26. Recogniz-
ing that each particle of the gyroscope consists of two carbon
atoms, we lee=1 kJ/mok2e, andro=4.5 A~2Y¢.
The carrier potential for each heavy particle will be taken

CH CH in the form
Uoxy) 1 K x?+y?
Xl =5 —l
Y72 1-(x2+y?)/R,
CH CH whereK is the rigidity in particle-carrier interaction, arij,

is the maximum possible deviation radius of a heavy particle.
In a protein macromolecule, the rigidity of atomic displace-
ments isK=4 N/m. We consider two maximum displace-

) ment valuesR,=1 A andRy=.
Assuming that the heavy particles alone are connected
2CH /\ 2CH with the thermostat, we obtain the equations of motion in the
® : ® form
= = .M
a -
l$==35

FIG. 4. Schematic representation of a molecular gyroscope

C,CgHs reduced to a model of a two-particle rotor of diameder . oH .
MXi:_%_FrMXi‘l‘gi, (21)
wherel = $ma? is the gyroscope moment of inertia, asds '
its revolution angle. JH
We take the potential of interaction of partidlavith_the My,=———T,My,+ 7, i=1,234,
gyroscope as the sum of two Lennard-Jones potentials, i
V(% yi) = €l[(rolr1)8—112+[(ro/r5)8— 112}, where the system’s Hamilton function is given by ERO);

& and 7; are the random normally distributed forceeghite
wherer, is the equilibrium arm between a heavy and a lightnoise describing the interaction of a heavy particlgith the
particle,r; is the instantaneous distance of a heavy particle thermostat[', =1/, is the friction factor, and, is the par-
to the first particle of the gyroscope, anglis the distance to ticle velocity relaxation time. The correlation functions of
the second particle. The interaction of carbon atoms in polyrandom forces are
meric macromolecules is commonly described by the

Lennard-Jones potentials of the form (&i(t1)§(t2))=2MT" kgT 8 6(t1—ty),
Y5 (mi(ty) 7;(t2))=2MT KT 5 6(t1 —tp),
(g% (&(ty) mi(t2))=0.
Y2
Here, kg is the Boltzmann constant, aridis the thermostat
temperature.
] Y1 We integrate the equation systé@t) by the Runge-Kutta
0 method to the fourth order of accuracy with a constant inte-
X X gration stepAt. In this computation, the delta functia¥(t)
2 ! is O for|t|>At/2 and 1At for |t|<At/2, that is, the integra-
m tion step corresponds to the correlation time of random force.
Yy Therefore, to use a system of Langevin equations, we need
that At<t,. Let the relaxation time b& =0.2 ps, and the
Cg? numerical integration step h&t=0.0025 ps.
M 4 Let at the initial moment of timé= 0 the system be in the
B ] fundamental state,
[ ~l
b #(0)=¢o, Xxi(0)=ui, VYi(0)=v;, (22)
FIG. 5. Atwo-dimensional model of a gyroscope in a molecular ) ) )
cavity of diameteib formed by four heavy particles of mass $(0)=0, x;(0)=0, vy,(0)=0, i=1,2,34,
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FIG. 6. Current mean temperature of the molecular thermostat 10 15 20 o5 20 35
T, (curve ) and temperatures of its molecular neighborhdad
(curve 2 as functions of time. Thermostat temperatiire 300 K, b (A)
cavity diameteb=11 A, M=m, andR,=1 A.

FIG. 7. Gyroscope thermalization timi¢ computed as a func-
tion of the molecular cavity diametdrat M=m,Ry=1 A (sym-
bols 2); M=m,Ry== (symbols 2; M=100m,Ry=c (symbols 3,

. 4
Uik_q, are : ; .
where the coordinates of a steady statg, {u;vi}i_s and extrapolation of this function to larde(curve 4.

determined as solutions to the minimization problem

H- min :¢=0,x,=0,...y,=0. particle system an_d wi_II always ex_ceed t_he heavy_ particle
BXg.ens Va system thermalization time {>t,). Timet, is almost inde-
pendent ofb and is dependent only on the relaxation time
Thus, at time zero, the molecular gyroscope is not thermalit, :t,~4t, .
zed. We analyzed the behavior of the system Ry=1 A,

Our objective is to estimate the average time of gyroscopandM =m,100n. The dependence of gyroscope thermaliza-
thermalization. It corresponds to the relaxation time of gyro-tion time t; on cavity diameteb is shown in Fig. 7. It is
scope rotation in a thermalized molecular system. For thigvident that, whatever the values R§ andM, the thermal-
purpose, we numerically integrate the equations of motionzation time increases exponentially withif we extrapolate

(21) subject to the initial conditiori22). this dependence to the range of lafgewe see that, ab
The gyroscope thermalization at tihés characterized by =28-32 A, the thermalization time, and hence the gyro-
its current temperature scope relaxation tim& ~*, will be of the order of seconds.
) With this size of cavity, the molecular gyroscope will revolve
Ti(t)=1(¢*(1))/kg, almost freely.
where bracketg-) imply averaging over independent real-
izations of random forceg;(t), »;(t),i=1,2,3,4. To obtain V. CONCLUSION
the average value, the systé1) was integrated more than

The molecular interfering gyroscope is a challenger for
., solving thekT problem as a probable mechanism of magne-
Stobiological effects. Indeed, the walls of a protein cavity do
not interfere with the gyroscopic degree of freedom directly

10000 times.

is characterized by its current temperature

MoA via short-range chemical bonds. For cavities larger than 30 A
T,(t)= 8 > () +yAD). in size, the contribution to the relaxation from the van der
8 1 Waals electromagnetic forces, induced by wall oscillations,

is small. Radiation damping is negligibly small. Finally, the

The time dependence of these temperatures is presented dgcillations of gyroscope supports produce a zero moment of
Fig. 6. Att=0, the temperatures aflg(0)=T,(0)=0. Fur-  forces about the axis of rotation and do not affect the angular
ther on the time coordinate, they monotonously approach thenomentum. The gyroscopic degree of freedom is very slow
thermostat temperature=300 K. to thermalize, its dynamic behavior is coherent, which gives

We will assume that the molecular subsystem is comyise to slow interference effects. Of course, whether or not
pletely thermalized if its current temperature exceeds0.99 some more or less water-free cavities of the size of 30 A and
We determine the gyroscope thermalization titpes a so-  larger do exist remains an open question, but, what is essen-
lution of the equationT(t)=0.99T, and the time of heavy tial, ELF magnetic field bioeffects are no longer a paradox.
particle system thermalization, as a solution of the equa- The role of molecular gyroscopes could probably be
tion T,(t) =0.99T. The gyroscope is thermalized by interact- played by short sections of polypeptides and nucleic acids
ing with the system of heavy particles, therefore its thermalbuilt inside globular proteins or in cavities between associ-
ization time will depend on the diametér of the heavy ated globules. In this respect, it is interesting to look at the
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Watson-Crick pairs of nitrous bas€adenine-thymine and tion be allowed, the mobile groups would not give clear cut
guanine-cytosinethat bind the DNA strands into a double reflections. Some other methods are needed, which would
helix as well as some other hydrogen-bound complexes ofvork with native forms of proteins avoiding distortions due
nitrous bases. Their rotations are hampered by steric factort crystallization.

However, in the realm of activity of special DNA enzymes, Generally speaking, the fact that the molecular gyroscope
steric constraints may be lifted to allow a relatively free ro-model gives a physically consistent explanation of MBEs
tation of molecular complexes. It is not yet clear whether orproves indirctly its real grounds. Further studies should
not the gyroscope type of molecular structures exists. Theyerify whether this conclusion is correct. In any case, today,
are unlikely to be detected by x-ray methods since theséhe interfering molecular gyroscope is a single available
require crystallization of proteins for structural analysis. Inmechanism to give explanations that would be physically
this state, the rotation would likely be frozen. Should a rotatransparent and generally agreeable with experiments.
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